DUNE BSM Group Overviews

Animesh Chatterjee Near Detector Software Workshop 07/24/2019

Motivation

- Primary physics goal of DUNE: MH, CP Violation
- However, other mechanisms could be responsible for neutrino flavor change on a sub-leading level
- Neutrino physics offers great potential for digging out the physics beyond the standard model (BSM).
- DUNE detector-beam configuration provides an excellent opportunity to study physics beyond standard neutrino oscillations
- LArTPC detector both for Near and Far detector for DUNE will be ideal to probe BSM Physics

BSM Physics WG Scope and Goals

- Enrich DUNE Physics case by studying sensitivities to a wide variety of non Standard Model phenomena
 - Looking into both Two-Detector (long-baseline) and ND-only (short-baseline) topics
 - Explore high-intensity beam, large FD detector mass, and high resolution of both ND and FD
 - Collaborate with Long-Baseline Physics group on topics that may affect standard oscillation measurements
- Develop code framework to carry out these studies and provide tools for others to test new ideas/models
- Inform beamline and/or detector design by reporting how sensitivities are modified by different designs or potential enhancements

Topics Being Studied

- Light Sterile Neutrinos
- Neutrino Tridents
- Low-Mass Dark Matter
- v_{τ} Physics Opportunities
- Non-Standard v Interactions (NSI)
- Non-Unitarity and CPT Violation
- Inelastic Boosted Dark Maker
- Large Extra dimensions

ND size used for the BSM searches

• Overall structure of the DUNE ND considered as LArTPC detector with the following detector dimensions

ND Properties	Values
Dimensions	7 m wide, 3 m high, and 5 m long
Dimensions of fiducial volume	6 m wide, 2 m high, and 4 m long
Total mass	147 ton
Fiducial mass	67.2 ton
Distance from target	574 m

- Signal and background efficiencies are different for different physics models.
- The fiducial volume is assumed to include the detector volume up to 50 cm of each face of the detector

Neutrino Flux

• Beam power configuration used for TDR

Energy (GeV)	Beam Power (MW)	Uptime Fraction	POT/year
120	1.2	0.56	1.1×10^{21}

Sterile Neutrinos

- Like the other LBL experiments, DUNE will be able to probe active-to-sterile neutrino mixing.
 - Look for CC and NC disappearance between ND and FD
 - > Sensitivity to v_{μ} disappearance and v_{e} appearance at ND

Work by E. Fernandez-Mar6nez, M. Blennow, S. Rosauro, J. Todd, A.S.

Sterile Neutrino search setup

Source of	MINOS	T2K	DUNE
Uncertainty	ν_{e}	ν_c	ν_{e}
Beam Flux after N/F extrapolation	0.3%	3.2%	2%
Interaction Model	2.7%	5.3%	$\sim 2\%$
Energy scale (ν_{μ})	3.5%	included above	(2%)
Energy scale (ν_e)	2.7%	2.5% includes all FD effects	2%
Fiducial volume	2.4%	1%	1%
Total	5.7%	6.8%	3.6 %
Used in DUNE Sensitivity Calculations			5% ⊕ 2%

Previous Systs. CDR - Table 3.8

Systematic errors included

→ Signal flux errors (+/-)8%

→ Background flux error: 15%

→ F/N flux e : 2%

→ F/N flux mu : 0.4%

→ CC x-sec error: 15%

→ NC x-sec error : 25%

→ F/N x-sec : 2%

- → GLoBES implementation with simultaneous fit of near and far detector
- → Using GLoBES plugin for steriles and NSI by J. Kopp. Assuming 3+1 model with one sterile neutrino:
- → 120 GeV reference beam, more realistic systematics (significantly larger) with respect to those considered in the CDR
- → Account for uncertainty in neutrino production point (or pion decay point) between target and ND by applying a 20% energy smearing obtained by integrating gaussian in reco. energy E

A. Chatterjee | Near Detector software workshop | FNAL

Sterile Neutrino Results

v_u CC and NC samples

Sterile Neutrino: Result

App + disappearance

Disappearance in NC sample

Neutrino Tridents in ND

• Rare SM process. Has been observed with measured cross section in

good agreement with SM

W. Altmannshofer, S. Gori, J. Martin-Albo, M. Wallbank, A.S.

- Strong probe of potential new Z' boson advanced as explanation for (g-2) anomaly
- → Z' couples to muons, but also to muon neutrinos. Enhances trident production w.r.t. SM
- → DUNE can probe still-allowed m Z' < 0.4 GeV region

Trident setup

- New MC event generator of neutrino trident events (in argon or iron) written.

 Code publicly available
- Backgrounds (CC interac6ons in ND LArTPC) generated using GENIE neutrino generator

Signal and backgrounds run through simulation

of the DUNE ND

 Event selection for neutrino tridents developed

	Coherent	Incoherent
$\nu_{\mu} \rightarrow \nu_{\mu} \ \mu^{+} \mu^{-}$	1.17 ± 0.07	0.49 ± 0.15
	(516 ± 31)	(216 ± 66)
$\nu_{\mu} \rightarrow \nu_{\mu} \ e^{+}e^{-}$	2.84 ± 0.17	0.18 ± 0.06
	(1252 ± 75)	(79 ± 27)
$\nu_{\mu} \rightarrow \nu_{e} \ e^{+}\mu^{-}$	9.8 ± 0.6	1.2 ± 0.4
	(4322 ± 265)	(529 ± 176)
$\nu_{\mu} \rightarrow \nu_{e} \; \mu^{+} e^{-}$	0	0
	(0)	(0)
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \ \mu^{+}\mu^{-}$	0.72 ± 0.04	0.32 ± 0.10
	(318 ± 18)	(141 ± 44)
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} e^{+}e^{-}$	2.21 ± 0.13	0.13 ± 0.04
	(975 ± 57)	(57 ± 18)
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \ e^{+}\mu^{-}$	0	0
	(0)	(0)
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \; \mu^{+} e^{-}$	7.0 ± 0.4	0.9 ± 0.3
	(3087 ± 176)	(397 ± 132)

Event rates per year (1.1E21) and tonne of argon

Results: Neutrino Trident

Low mass dark matter search at ND

- Models of sub-GeV dark matter typically involve scalar or fermion DM and vector or scalar mediators
- Maybe the simplest model is known as the "dark photon" model. The mediator is a new gauge field which "mixes" with the SM photon through &
- Dark Matter production :

Meson decay is the dominant channel for mediator < 2 GeV (sub-GeV)

Work by A.C, K.K, P.M., V.V, J.Yu

Detection of DM and ND setup

- Interactions look like just neutrino interactions
- All interactions are neutral current (since mediator is not charged)
- In this analysis we consider only Electron Elastic scattering

- ND fiducial volume is same as other studies
- Background process includes any process with electron recoil $(v_{\mu}$ -e, and v_{e} CCQE interaction)
- 3.5 years of data (both neutrino and anti-neutrino mode) used for the analysis with 1.1E21 POT

Results

Summary of Needs for BSM group

• Near term:

- → Description of the ND structure, dimensions, fiducial volume
- → Response function for different particles (muon, electron)
- → Realistic number about the detector systematics
- → Possibilities of having off-axis detector

• Long term:

- → Full reconstruction with DUNE-ND simulation setup
- → Integration of different MC generator within DUNE-ND setup
- → Detail understanding about the particle identification and reconstruction

Summary of Needs for BSM group

- We are preparing requirement list same as LBL group
- Each analysis group will identify the requirement to perform more realistic analysis

We are expecting to have the table within few weeks

Conclusions

- BSM Physics searches with DUNE are an active area of research within theory/ phenomenology community and also within the DUNE collaboration
- Excellent space for development of collaborations between theorists/ phenomenologists and experimentalists.
- Results are in place for TDR with identical ND fiducial volume, neutrino flux and POT
- Different physics model uses different MC generator
- Require common simulation framework along DUNE-ND group and integrate different MC generator
- Full reconstruction of events within the DUNE-ND frame-work will be the final goal.

Thank You

